Open
Close

Перископ подводной лодки. Перископные комплексы подводных лодок Длина перископа подводной лодки

Изобретение относится к оптическому приборостроению, к устройствам оптического наведения и прицеливания, а именно к перископам подводных лодок. Перископ подводной лодки содержит корпус-тумбу, зафиксированную на прочном корпусе судна, внутри которой герметично установлена труба перископа с возможностью вертикального перемещения при помощи подъемного механизма, которая соединяет головную часть перископа и бугель, состоящий из двух частей, связанных между собой. Одна из частей бугеля соединена с корпусом-тумбой с возможностью вертикального перемещения, а вторая имеет возможность вращения относительно вертикальной оси перископа и прикреплена к трубе перископа. Перископ выполнен не проникающим в прочный корпус судна. Подъемный механизм расположен внутри корпуса-тумбы и состоит из электродвигателя с редуктором и двух вертикальных ходовых винтов. Верхние и нижние концы винтов соединены соответственно с верхней частью и основанием корпуса-тумбы с возможностью вращения вокруг вертикальной оси, параллельной оси перископа. С первой невращающейся частью бугеля каждый ходовой винт кинематически связан при помощи плавающей гайки. Достигается повышение надежности и удобства эксплуатации перископа. 2 з.п.ф-лы, 1 ил.

Изобретение относится к оптическому приборостроению, к устройствам оптического наведения и прицеливания, а именно к перископам подводных лодок. Перископы бывают как проникающие внутрь корпуса лодки, так и не проникающие. Не проникающие внутрь корпуса лодки перископы имеют преимущество, так как они без особых осложнений сохраняют герметичность наблюдательного поста подлодки и обеспечивают более удобное место для размещения оператора. При таком размещении оператор обеспечен зафиксированным монитором-окуляром, который, хотя и усложняет оптическую систему перископа, но позволяет отслеживать цель, не поворачивая монитор-окуляр вокруг своей оси. Оптический канал в таких перископах заменен на оптико-электронные каналы, использующие электрические сигналы, передаваемые по кабелю, что делает принципиально возможным размещение перископа не только над центральным постом, что является обязательным для традиционных перископов, но и в других местах на прочном корпусе. Перископы подобного типа самостоятельно выдвигаются в рабочее положение. Перископы подобного типа выпускаются всеми ведущими фирмами мира в области перископостроения, например, Kollmorgen Corp и Hughes Aircraft Со (США), Sagem SA (Франция), Pilkington Optronics (Великобритания). Riva Calzony (Италия), Carl Zeiss (Германия) . Проникающие внутрь корпуса судна перископы заставляют оператора двигаться вслед за окуляром и требуют больше места внутри корпуса подлодки. Современные проникающие внутрь корпуса лодки перископы не требует больше от оператора приспосабливаться к неудобным низким позициям, как это было при размещении окулярной части в основании трубы перископа. Эта проблема решилась при помощи монтирования перископа внутри корпуса-трубы, прикрепленного к жесткому корпусу судна. Окуляр сохраняет постоянную позицию вне зависимости от положения головной части и трубы перископа, которые двигаются вверх и вниз внутри корпуса-тумбы при помощи подшипников скольжения и подъемного механизма . Наиболее близким по технической сущности к предлагаемой конструкции является проникающий в прочный корпус лодки перископ по , содержащий корпус-тумбу, закрепленную на прочном корпусе судна, трубу, соединяющую головную и окулярную части, которая содержит оптику и перемещается в вертикальном направлении под воздействием подъемного механизма благодаря подшипникам, установленным в верхней части корпуса подлодки и верхней части корпуса-тумбы, и оборудована в нижней части трубы - бугеле подвесным механизмом горизонтального наведения, включающего невращающуюся часть и двигатель. Невращающаяся часть механизма горизонтального наведения соединена с трубой при помощи роликового упорного подшипника, который позволяет трубе вращаться вокруг вертикальной оси под воздействием двигателя. Перископ содержит также неподвижный относительно корпуса подлодки окулярный блок. Прототип обладает следующими недостатками:

1. Сложность в обеспечении герметичности наблюдательного поста подлодки, так как труба перископа проникает в прочный корпус судна. 2. Невозможность поворота по курсовому углу при опущенном положении трубы и при ее неполном подъеме, что осложняет эксплуатацию прибора. Задача изобретения заключается в повышении надежности и удобства эксплуатации перископа. Поставленная задача осуществляется в предлагаемом перископе подводной лодки, содержащем корпус-тумбу, зафиксированную на прочном корпусе судна, внутри которого герметично установлена труба перископа с возможностью вертикального перемещения при помощи подъемного механизма, которая соединяет головную часть перископа и бугель. Бугель состоит из двух частей, связанных между собой посредством подшипника, при этом одна из частей бугеля соединена с корпусом-тумбой с возможностью вертикального перемещения, а вторая имеет возможность вращения относительно вертикальной оси перископа и прикреплена к трубе перископа. Предлагаемый перископ отличается от прототипа тем, что перископ выполнен не проникающим в прочный корпус судна. Подъемный механизм расположен внутри корпуса-тумбы и состоит из электродвигателя с редуктором, и по меньшей мере двух вертикальных ходовых винтов. Верхние и нижние концы винтов соединены соответственно с верхней частью и основанием корпуса-тумбы с возможностью вращения вокруг вертикальной оси параллельной оси перископа, а с первой, невращающейся частью бугеля каждый ходовой винт кинематически связан при помощи плавающей гайки. Предлагаются варианты перископа, отличающиеся тем, что верхние и нижние концы вертикальных ходовых винтов соединены соответственно с верхней частью и основанием корпуса-тумбы при помощи подшипников, а плавающие гайки имеют возможность произвольного перемещения в параллельных горизонтальных плоскостях в пределах 1-1,5 мм. Электродвигатель и редуктор подъемного механизма зафиксированы на основании корпуса-тумбы. Сущность изобретения заключается в повышении надежности и удобства эксплуатации перископа путем осуществления возможности подъема и опускания трубы перископа в любом положении по курсовому углу, а также в осуществлении возможности предварительного наведения перископа на цель в его опущенном положении. Это осуществляется путем создания точки опоры для поворота трубы по курсовому углу при ее опущенном положении и при ее неполном подъеме, которая создается при помощи соединения невращающейся части бугеля с ходовыми вертикальными винтами, верхние и нижние концы которых зафиксированы на корпусе-тумбе. Сущность изобретения пояснена чертежом. На чертеже показана конструкция предлагаемого устройства. Как видно из чертежа перископ подводной лодки содержит корпус-тумбу 1, зафиксированную на прочном корпусе судна 2, внутри которой установлена труба 3 посредством опор, расположенных в верхней части корпуса-тумбы и подшипников скольжения 4. Соединения выполнены герметичными посредством грязевых и герметизирующих манжет 5. Труба 3 соединяет головную часть 6 и бугель перископа 7 и не проникает в прочный корпус лодки 2. Бугель 7 состоит из двух частей, одна из которых 8 соединена с корпусом-тумбой с возможностью вертикального перемещения бугеля, а вторая 9 дополнительно имеет возможность вращения относительно вертикальной оси перископа при помощи механизма горизонтального наведения и жестко соединена с трубой перископа 3. Части бугеля соединены между собой посредством подшипника 10. Электродвигатель с редуктором 11 механизма горизонтального наведения прикреплен к невращающейся части бугеля. Подъемный механизм состоит из электродвигателя с редуктором 12, которые зафиксированы на основании корпуса-тумбы 1 и вертикальных ходовых винтов 13. Верхние и нижние концы винтов соединены с верхней частью корпуса-тумбы и его основанием соответственно при помощи подшипников 14. Винты соединены с невращающейся частью бугеля 8 с возможностью перемещения в параллельных горизонтальных плоскостях в пределах допустимого люфта (примерно 1 мм), при помощи плавающей гайки 15. Люфт вызван погрешностью изготовления ходовых винтов. Устройство работает следующим образом. Труба перископа 3 под воздействием электродвигателя подъемного механизма 12 двигается в вертикальном направлении при помощи вертикальных ходовых винтов 13, по которым скользит плавающая гайка 15. Труба перископа 3 может разворачиваться по курсовому углу (вокруг вертикальной оси перископа) в любом положении по ходу движения в вертикальном направлении, так как существует точка опоры, образованная соединением невращающейся части бугеля 8 с ходовыми винтами 13 посредством плавающей гайки 15. Литература

1. Справочник "Janes" (1998-1997 год)-"Sumbarint weapont control syptems. Optronic masts"). 2. Патент Франции N 2488414 (прототип).

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Перископ подводной лодки, содержащий корпус-тумбу, зафиксированную на прочном корпусе судна, внутри которой герметично установлена труба перископа с возможностью вертикального перемещения при помощи подъемного механизма, которая соединяет головную часть перископа и бугель, состоящий из двух частей, связанных между собой посредством подшипника, при этом одна из частей бугеля соединена с корпусом-тумбой с возможностью вертикального перемещения, а вторая имеет возможность вращения относительно вертикальной оси перископа и прикреплена к трубе перископа, отличающийся тем, что перископ выполнен не проникающим в прочный корпус судна, подъемный механизм расположен внутри корпуса-тумбы и состоит из электродвигателя с редуктором и по меньшей мере двух вертикальных ходовых винтов, верхние и нижние концы которых соединены соответственно с верхней частью и основанием корпуса-тумбы с возможностью вращения вокруг вертикальной оси, параллельной оси перископа, а с первой, невращающейся частью бугеля каждый ходовой винт кинематически связан при помощи плавающей гайки. 2. Перископ по п.1, отличающийся тем, что верхние и нижние концы вертикальных ходовых винтов соединены соответственно с верхней частью и основанием корпуса-тумбы при помощи подшипников, а плавающие гайки имеют возможность произвольного перемещения в параллельных горизонтальных плоскостях в пределах 1-1,5 мм. 3. Перископ по п.1 или 2, отличающийся тем, что электродвигатель и редуктор подъемного механизма зафиксированы на основании корпуса-тумбы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

Перископные комплексы подводных лодок

Современные ПЛ оборудуются многофункциональным комплексом, состоящим из двух перископов, что обеспечивает широкие функциональные возможности такого комплекса и его надежность. За рубежом такие перископы классифицируются как перископы атаки (командирские перископы) и перископы поиска (универсальные перископы).

Перископ атаки используется для оперативной оценки надводной и воздушной обстановки.

Основным каналом является визуально-оптический канал окулярного наблюдения оператором, что определяет основную его конструктивную особенность - «проникающую» через основной корпус ПЛ трубу перископа с оптической системой, передающей изображение в окуляры наблюдения.

Перископ поиска предназначен для сбора возможно большего объема информации об обстановке в районе нахождения ПЛ. При отсутствии возможности наблюдения традиционным визуальным каналом он обеспечивает наблюдение за счет использования тепловизионной и телевизионной систем

Изображения от телевизионных и тепловизионного приемников информации передаются на экран монитора.

Для того чтобы создать оператору условия для выполнения одинаковых действий при управлении прибором, монитор устанавливается в окулярной части. Этот монитор можно использовать также и для отображения символов сопутствующей информации.

Таким образом, оператору, работающему с перископом, приходится обрабатывать большой объем визуальной информации.

Наиболее сложные вопросы при проектировании перископных комплексов, до настоящего времени не решенные, возникают при организации предъявления визуальной информации оператору с учетом его психофизиологических характеристик.

Целью работы является изучение принципов построения окулярной части современного перископа, обеспечивающей оптимальные условия для работы оператора, ведущего наблюдение через визуальный канал.

Проблемы, связанные с построением окулярной части современных перископных систем

Наиболее сложной задачей при построении перископных комплексов, по нашему мнению, является организация рационального предъявления визуальной информации оператору с учетом его психофизиологических характеристик.

С точки зрения рационального построения оптических наблюдательных систем прежде всего возникают вопрос по какой из существующих схем целесообразно в данных условиях применения реализовать окулярную часть, а именно выполнить его в виде монокуляра, бинокуляра или псевдобинокуляра.

До последнего времени окулярная часть отечественных перископов выполнялась по монокулярной схеме, т.е. наблюдение велось через один окуляр.

Однако, обзор отечественных и зарубежных публикаций показал, что зарубежные фирмы, строят окулярную часть своих перископов по бинокулярной схеме. Здесь возможны две схемы построения.

В первой схеме оператор наблюдает в каждом из двух окуляров изображение, сформированное визуальным каналом, и сопутствующую информацию.

Во второй схеме построения окулярной части оператор наблюдает в один окуляр изображение, сформированное визуальным каналом, а второй окуляр используется только для ввода в него сопутствующей информации.

Следующий ряд задач, возникающих при проектировании окулярной части, связан с необходимостью предъявлять оператору видеоинформацию (сопутствующую знаковую или телевизионного канала).

При этом неизбежно возникают вопросы о цветовой гамме символов сопутствующей информации, их угловых размерах, о яркости и структуре экранов мониторов, обеспечивающих наилучшие условия наблюдения и восприятия изображения.

Еще одна задача, которая осталась до настоящего времени нерешенной при проектировании подобных систем, связана с физиологическими аспектами восприятия зрительных образов при монокулярном, бинокулярном и псевдобинокулярном предъявлении.

Выбор оптической схемы построения окулярной части перископа

Зарубежные фирмы, занимающиеся перископостроением, конструируют окулярную часть по бинокулярной схеме с возможностью переключения на монокуляр.

При этом используются, как правило, две схемы построения.

В первой схеме окулярной части оператор наблюдает в один окуляр изображение, сформированное визуальным каналом, а второй окуляр используется только для ввода в него сопутствующей информации, это так называемая псевдобинокулярная схема построения.

Во второй схеме оператор одновременно наблюдает в каждом из двух окуляров изображение, сформированное визуальным каналом, и сопутствующую информацию на экране монитора, это бинокулярная схема построения.

Псевдобинокулярная схема построения

Визуальный и канал наблюдения сопутствующей информации представляют собой самостоятельные, раздельные каналы.

Таким образом, световой поток, передаваемый визуальным каналом, направляется в один глаз и в один окуляр, а с экрана монитора - в другой глаз и окуляр.

Данная схема псевдобинокуляра основана на физиологических особенностях зрительной системы человека, когда два изображения, поступающие в каждый глаз, сливаются в одно, которое и воспринимается человеком.

С технической точки зрения такой способ предъявления визуальной информации имеет существенное преимущество, так как позволяет снизить неблагоприятное влияние высоких уровней освещенности изображения, создаваемого визуальным каналом, на контрастность изображения на экране монитора.

При недостаточных светотехнических характеристиках миниатюрных мониторов этот фактор оказывается существенным.

На рисунке 3 представлены изображения, наблюдаемые в каждый из окуляров (а; б), а также изображение воспринимаемое оператором при одновременном наблюдении в оба окуляра (в).

При реализации псевдобинокулярного способа предъявления информации происходит искусственное разделение полей зрения правого и левого глаза, что приводит к возникновению ряда психофизиологических феноменов.

Такой способ предъявления информации не является для зрительного анализатора естественным. Создание псевдобинокуляра ставит вопрос об изменении зрительных функций одного глаза при воздействии световых раздражителей на другой глаз.

При псевдобинокулярном предъявлении правый и левый глаз воспринимают изображения, которые могут значительно отличаться по яркости.

Это связано с тем, что один глаз оператора, взаимодействующий с изображением на экране монитора, полностью экранируется, а другой глаз воспринимает информацию, передаваемую визуальным каналом.

Бинокулярная схема построения

В бинокулярной схеме оператор наблюдает одновременно в каждом из двух окуляров изображение, сформированное визуальным каналом, и сопутствующую информацию с экрана монитора. Схема построения бинокуляра представлена на рисунке 4.

Для создания бинокуляра можно применить склейку призм 2, на склеенные грани которых наносится светоделительное покрытие для разделения светового пучка на два окуляра.

Склейка призм устанавливается в параллельном ходе лучей между объективами 1 и 3. Далее объективы 3 собирают пучки лучей в фокальных плоскостях окуляров 5. Для возможности регулирования межзрачкового расстояния применяются призмы-ромб 4 (показаны их сечения).

1 , 3 , 6 - объективы, 2, 4 - призмы, 5 - окуляр.

Канал наблюдения сопутствующей информации состоит из объективов 6, 3 которые проецируют изображение сопутствующей информации с экрана монитора в фокальную плоскость окуляров 5.

Таким образом, в фокальной плоскости окуляров образуется изображение сопутствующей информации и изображение внешних наблюдаемых объектов. Оператор наблюдает в окуляры эти изображения совмещенными. Вид поля зрения в окуляр представлен на рисунке 5.

Рисунок 5 - Вид поля зрения при наблюдении в бинокуляр

При создании окулярной части по бинокулярной схеме возникает еще одна проблема - оператор может не различить сопутствующую информацию на фоне изображения наблюдаемых объектов, формируемого визуальным каналом, как показано на рисунке 3.5.

Для устранения этого недостатка необходимо, чтобы яркостный контраст между ними составлял не менее 2% (минимально различимый глазом человека яркостный контраст).

Визуализация информации с экрана монитора

Современные наблюдательные приборы, используемые в боевых подвижных средствах, такие как перископы подводных лодок, надводных кораблей, бронетранспортеров и т.п., должны обеспечивать возможность наблюдения в любое время суток и в сложных погодных условиях.

С этой целью они оборудуются дополнительно к визуальному каналу оптоэлектронными каналами (телевизионными приборами, работающими при низких уровнях внешней освещенности, а также тепловизионными приборами).

Таким образом, оператору, работающему с комплексным прибором, приходится работать с большим объемом визуальной информации.

Поэтому при разработке таких комплексных приборов встает вопрос о создании рабочего места оператора, а именно, о способах предъявления оператору видеоинформации.

Рабочее место оператора часто выполняется таким образом, что информация от каждого наблюдательного канала передается на экраны нескольких мониторов (рисунок 6) или же на экран одного монитора, разделенного на несколько полей.

Рабочее место должно способствовать максимально быстрому принятию решения в сложных ситуациях, связанных с наблюдаемой панорамой, а слежение за многими экранами не обеспечивает достаточно быстрого анализа сюжетов. Кроме того, при таком решении сложно вести одновременное наблюдение при помощи визуального и оптоэлектронных каналов.

Для того чтобы наблюдать экран монитора в поле зрения визуального канала, монитор устанавливается в окулярной части перископа, а для передачи изображения с экрана в окуляры используется проекционная оптическая система.

Рисунок 6 - Многоэкранный пульт рабочего места оператора

Деятельность оператора при различных способах предъявления визуальной информации

Основным объектом исследования является окулярная часть многофункционального перископного комплекса современных ПЛ.

Рассмотрена схема макета бинокулярного узла совмещения визуального канала и канала наблюдения сопутствующей информации (рисунки 6 и 7)

Оптическая схема данного узла, в который входят визуальный канал и канал наблюдения сопутствующей информации, представлена на рисунке 8

Входной объектив 1 создает изображение наблюдаемого внешнего объекта в фокальной плоскости оборачивающей системы 2, 4, которая переносит это изображение в фокальную плоскость окуляров 6. Для создания псевдобинокуляра призма-куб 3 выводится из хода лучей.

Канал наблюдения сопутствующей информации состоит из объективов 7, 4, которые проецируют плоскость экрана монитора в фокальную плоскость окуляров 6.

Рисунок 8 - Оптическая схема макета бинокулярного узла совмещения визуального канала и канала наблюдения сопутствующей информации с экрана монитора 1, 2, 4, 7 - объективы, 3 - призма, 5 - зеркало, 6 - окуляр.

Определение вероятности обнаружения

Для определения вероятности обнаружения при монокулярном и бинокулярном наблюдении используется канал наблюдения сопутствующей информации

Оператору предъявляется на короткое время тест-объекты, выводимые на экран монитора. В качестве тест-объектов используется например буквы русского алфавита.

В изученных работах тест-объекты предъявляются наблюдателям, далее производилось определение усредненных значений правильного опознавания букв при наблюдениях в следующих условиях: при изменении уровня яркости экрана монитора (от 1 до 120) и постоянном контрасте между объектом и фоном (К =100 %); при изменении контраста между объектом и фоном (от 100 до 10%) и постоянной яркости экрана монитора (L =120); при изменении яркости экрана и контраста между объектом и фоном.

Яркость экрана монитора и контраст между объектом и фоном определялись при помощи фотометра.

Для определения вероятности обнаружения при псевдобинокулярном способе предъявления информации объектив визуального канала открывался, призма 3 выводилась из хода лучей.

При этом оператор одновременно наблюдал в один окуляр изображение визуального канала, во второй окуляр - экран монитора. Полученные результаты представлены в таблицах 1 и 2, а также на рисунках 9 и 10.

окуляр зрительный перископный

Рисунок 9 - Зависимость вероятности обнаружения от контраста между объектом и фоном

Рисунок 10 - Зависимость вероятности обнаружения от яркости экрана

Изучен макет бинокулярного узла совмещения визуального канала и канала наблюдения сопутствующей информации.

В изученных исследованиях, с точки зрения правильного опознавания объектов, установлено, что при низком уровне освещенности, а также при малом контрасте между объектом и фоном наблюдение через бинокуляр имеет несравненное преимущество.

Установлено, что, с точки зрения пространственной разрешающей способности, наблюдение при помощи бинокуляра, даже с учетом уменьшения потока излучения, равнозначно монокулярному наблюдению.

Но с точки зрения вероятности обнаружения и распознавания объектов, особенно при низкой яркости объектов наблюдения и малом контрасте между объектом и фоном, бинокулярное наблюдение обладает преимуществами

Размещено на Allbest.ru

...

Подобные документы

    Анализ боевых действий подводных лодок США по нарушению коммуникаций Японии на Тихом океане во второй мировой войне. Силы и средства ведения подводной войны. Формы, методы и способы действий подводных лодок США. Выводы и уроки из анализа боевых действий.

    курсовая работа , добавлен 27.10.2009

    Ядерные реакторы подводных лодок, принципы действия, конструкция. Устройство водо-водяного реактора, используемого на подводных лодках. Немного из истории отечественного военно-морского флота. Катастрофы на атомных подводных лодках, причины гибели.

    презентация , добавлен 26.05.2014

    Процесс формирования противолодочной авиации как нового рода морской авиации и противолодочных сил ВМФ. Назначение противолодочных самолетов и корабельных вертолетов. Гидроакустические средства обнаружения подводных лодок, оружие для их уничтожения.

    курсовая работа , добавлен 05.09.2009

    Требования руководящих документов по боевому использованию гидроакустических средств. Правила выбора режимов работы в различных тактических ситуациях. Классификационные признаки при боевом использовании ГАС обнаружения подводных диверсионных сил, средств.

    презентация , добавлен 23.12.2013

    Создание, совершенствование ядерного оружия и термоядерных боеприпасов. Наращивание количества стратегических наступательных вооружений. Разработка нейтронного запала, подводных лодок, бомбардировщиков, баллистических и моноблочных ракет, другого оружия.

    курсовая работа , добавлен 26.12.2014

    Первые упоминания и идеи о возможности спуска людей под воду, их воплощение в жизнь и модернизация. Подводный флот в Великой Отечественной войне. Общая характеристика современного состояния подводного вооружения. Классификация суден, средства их связи.

    реферат , добавлен 22.11.2010

    Авария на атомной подводной лодке К-141 "Курск": спасательные работы, версии возможных причин аварии, идентификация погибших, итоги операции подъёма. Другие аварии на советских, российских и иностранных атомных подводных лодках. Причины аварийности.

    реферат , добавлен 22.10.2014

    Теоретические аспекты управления и профилактики неуставных взаимоотношений, их анализ в войсковой части ракетных войск. Основные направления воспитательной работы в части по сплочению воинских коллективов и формированию в них уставных взаимоотношений.

    дипломная работа , добавлен 30.10.2010

    Структура военно-воздушных сил РФ, их предназначение. Основные направления развития дальней авиации. Современные российские зенитные ракетные комплексы. Части и подразделения разведки, поиска и спасания. История ВВС России, установление памятного дня.

    реферат , добавлен 24.03.2013

    Классификация магнитометрических средств обнаружения по физическим принципам действия, по уровню излучения. Главное назначение МСО, основы теории его разработки. Характерные помехи при применении МСО, способы их компенсации, особенности разработки, схема.

Морозов М.Э. Советский подводный флот 1922 -1945 гг.: О подводных лодках и подводниках - M.: ACT, 2006. - 877 c.
ISBN 5-17-034862-2
Скачать (прямая ссылка): sovecpodvodlodk2006.djvu Предыдущая 1 .. 63 > .. >> Следующая
С лета 1942 года для повышения живучести батарей при близких взрывах глубинных бомб их стали устанавливать на импортные амортизаторы, а 03.06.1944 г. вышел приказ HK ВМФ №0439, который объявлял такую установку обязательной. Кроме того, тем же приказам предписывалось оснащать батареи механической системой перемешивания электролита и дополнительной системой об-щеямовой вентиляции.
По причинам военного времени выполнение этого указания осуществлялось довольно низкими темпами. По состоянию на весну 1945 года системой для механического перемешивания электролита было оснащено всего восемь подлодок, а еще на 38 ее собирались установить в ближайшие месяцы.
Таблица 3.1.4.
Характеристики аккумуляторных батарей советских подводных лодок, разработанных в период 1-й и 2-й пятилеток
Тип Число Число Общий Продол- Разряд Емко- Удель- Удель-
батареи элемен- групп вест житель- пый сть А, ч ная ная
тов ность ток, А емкость, энергия,
разрядки, ч А-ч/кг Втч/кг
«А Г» 120 2 51 20 300 GOOO 14.14 26.65
1 2300 2300 5.41 9.33
164
Окончание таблицы 3.1.4.
тіГн Число Число Общий Продол* Разряд Емко- Удель- Удель-
батареи элемен- групп вес, T житель- иый сть А, ч ная ная
тов ыость ток, А емкость, энергия,
разрядки, ч А-ч/кг Вт-ч/кг
Тлёбсль* 240 4 112 20 325 6400 13.77 27
"-- 3 1600 1770 10,27 19.20
240 4 120 50 155 7750 15.50 30,57
2 2200 4400 8.81 16
«Л-55» 333 3 138 50 124 G200 14.34 28.25
2 1750 3500 8.11 14.G9
«л с» 336 3 127 50 105 5670 13.42 2959
13 1880 2444 6.48 11.14
<¦ Л ебедь-:->> 224 4 102 20 365 7300 16,02 3155
2 2160 4320 9.51 17.39
<ксм» 112 2 61.6 40 225 9000 16.78 32.11
1 3750 3750 6,82 11,91
«мл» 5G 1 14.6 20 205 4100 15.76 31
0.66 2130 1400 539 9.2
3.2. СРЕДСТВА НАБЛЮДЕНИЯ, ОБНАРУЖЕНИЯ И ЦЕЛЕУКАЗАНИЯ
Перископы
Перископы долгое время были единственным устройством для наблюдения из подводной лодки, находящейся в погруженном положении. Большие и средние подлодки имели по два перископа (командирский и зенитный), малые - по одному зенитному. Командирские, кроме непосредственно функции наблюдения, служили также для определения расстояния до цели, пеленга и курсового угла на цель, курсового угла цели и ее скорости. Устройство зенитных перископов было идентично командирским и отличалось от последних большим углом вертикального наведения (до 90°) и большей светосилой, что делало их предпочтительными при наблюдении в сумерках и ночью.
Сам перископ состоял из следующих основных элементов:
1. Длинной прочной трубы с заостренной частью, внутри которой монтировалась оптика.
2. Подъемного приспособления, позволяющего поднимать перископ на любой промежуток времени.
3. Приспособления «неподвижная линия в пространстве», служащего для определения скорости цели.
165
4. Дальномерного устройства для определения расстояния до цели и ее курсового угла.
5. Азимутальных кругов, служащих как для штурманских целей, так и для расчетов при торпедной атаке.
Всего командирские перископы серии ПА имели три азимутальных круга, один из которых являлся картушкой репитера гирокомпаса, и два окуляра: наблюдательный и измерительный. Измерительный окуляр включал в себя дальномерное устройство, которое служило для определения расстояния до цели и ее курсовых углов. Расстояние до цели вычислялось по ее высоте, взятой из справочника или определенной на глаз и по вертикальному параллактическому углу, определенному непосредственно дальномерным устройством. Измерение курсового угла производилось по известной длине цели и горизонтальному параллактическому углу.
Для измерения скорости цели перископ имел устройство «неподвижная линия в пространстве». Это устройство состояло из вертикальной нити, проектирующейся в поле зрения и связанной с принимающим мотором, работающим синхронно с гирокомпасом. Измерение скорости цели при известной ее длине сводилось к определению времени, необходимого для прохождения ею пути, равного собственной длине. Для отсчета значений с азимутальных кругов без отрыва глаз от окуляра перископ имел специальную оптическую систему, проектирующую участок шкалы среднего азимутального круга в поле зрения наблюдателя.
Лодки дореволюционной постройки в подавляющем большинстве оснащались перископами системы Герца, изготовленными итальянской фирмой «Галилео». В советское время производство перископов осуществлял Ленинградский оптико-механический завод (ЛОМО). Поначалу, как обычно, не обошлось без иностранных закупок. Несколько десятков перископов были приобретены в 1931-1933 гг. в Италии у фирмы «Галилео» и в Германии у фирмы «Карл Цейс». От отечественных они отличались системой измерения дистанции, не требовавшей знания размеров цели (оптический дальномер, основанный на совмещении верхней и нижней половинок изображения), и возможностью подсоединения фотокамеры.
Примерно с этого времени удалось наладить производство перископов на ЛОМО. Первые модели имели длину оптической
166
трубы 7 м (малые лодки) или 7,5 м (средние и большие лодки). Перед войной для вооружения больших лодок стали изготовляться 8,5-метровые перископы. Одновременно в производство запустили 9-метровые перископы для подлодок типа «Щ», на которых боевой пост командира во время торпедной атаки находился не в рубке, а в центральном посту. Ими успели оснастить те лодки, которые прошли средний ремонт в 1940 году. Рост длины перископов был вызван необходимостью увеличить значение перископной глубины и, таким образом, увеличить скрытность подводного движения (у первых серий субмарин при движении на перископной глубине даже образовывались буруны от антенных стоек). Позже была поставлена задача - удлинить перископы для возможности свободного прохождения кораблей над лодками в подводном положении.

Перископ подводной лодки относится к устройствам оптического наведения и прицеливания. Перископ состоит из головной части, включающей защитное стекло, поворотный визирный блок с механизмом наведения по высоте и систему смены увеличений, окулярной части, содержащей коллектив, отклоняющее зеркало и окуляр, соединенные трубой, внутри которой размещены по ходу оптического луча объектив и оборачивающие системы, и оборудованной в нижней части механизмом горизонтального наведения. Защитное стекло и поворотный визирный блок в виде прямоугольной призмы-куба выполнены биспектральными. В головную часть перископа введен дополнительный канал наблюдения, соединенный с основным каналом через прямоугольную призму-куб. Между осью вращения прямоугольной призмы-куба и механизмом наведения по высоте введен дифференциал, один вход которого подключен к механизму наведения по высоте, а другой - к вновь введенной системе управления поворотом призмы на постоянный угол. В окулярную часть перископа, между отклоняющим зеркалом и окуляром, введен поляризационный фильтр, имеющий возможность поворота вокруг оптической оси прибора, при этом он может быть удален из прибора. Изобретение позволяет увеличить многофункциональность перископа, повысить надежность работы устройства при различных внешних условиях. 1 з.п.ф-лы, 1 ил.

Изобретение относится к оптическому приборостроению, к устройствам оптического наведения и прицеливания, а именно к перископам подводных лодок. Известен перископ подводной лодки по , состоящий из головной и окулярной частей, соединенных трубой. Перископ имеет один визуальный канал наблюдения, содержащий установленные по ходу оптического луча защитное стекло, визирный блок в виде прямоугольной призмы, объектив, оборачивающие системы, коллективы, окулярную прямоугольную призму и сам окуляр. Описанная конструкция перископа имеет следующие недостатки: 1. Перископ имеет один канал наблюдения, следовательно, у него ограниченные возможности наблюдения при неблагоприятных условиях; 2. Перископ не может визировать на курсовых углах солнца, так как отраженный от поверхности воды свет, попадая в глаз оператору, не позволяет ему видеть цель. Наиболее близким по технической сущности к предлагаемой конструкции является перископ по , состоящий из головной части в виде визирной призмы, установленной в верхней части трубы. Труба содержит оптику и перемещается в вертикальном направлении под воздействием подъемного механизма благодаря подшипникам, установленным в верхней части корпуса подлодки, и оборудована в нижней части подвесным механизмом горизонтального наведения, включающего неподвижную часть и двигатель. Неподвижная часть механизма горизонтального наведения соединена с трубой при помощи роликового упорного подшипника, который позволяет трубе вращаться вокруг вертикальной оси под воздействием двигателя. Перископ содержит также подвижный относительно корпуса подлодки окулярный блок, содержащий отклоняющие зеркала и окуляр. Прототип обладает следующими недостатками: 1. Конструкция обладает одним каналом наблюдения, что существенно ограничивает информационные возможности прибора; 2. В прототипе не предусмотрена возможность визирования на курсовых углах солнца; 3. При деформации корпуса лодки во время ее эксплуатации (под постоянным давлением воды и внешними воздействиями ударного характера) возможна расцентрировка подшипников перископа и подшипников механизма горизонтального наблюдения, что может привести к заклиниванию трубы при повороте прибора вокруг вертикальной оси. 4. Защитное стекло и визирный блок выполнены из материалов, прозрачных только для излучения видимого диапазона спектра. Задача изобретения состоит в увеличении многофункциональности перископа, повышении надежности работы устройства при различных внешних условиях. Задача решается в предлагаемом перископе подводной лодки, состоящем из основного визуального канала, содержащего расположенные последовательно по ходу оптического луча защитное стекло, поворотный визирный блок с механизмом наведения по высоте и систему смены увеличений, расположенные в головной части перископа, а также окулярную часть, соединенную трубой с головной частью перископа, внутри которой размещены по ходу оптического луча объектив и оборачивающие системы, и оборудованной в нижней части механизмом горизонтального наведения. Окулярная часть содержит коллектив, отклоняющее зеркало и окуляр. Предлагаемый перископ отличается от прототипа тем, что в головную часть перископа введен дополнительный канал наблюдения. Поворотный визирный блок выполнен в виде прямоугольной призмы-куба, оптически связанной с основным и дополнительным каналами наблюдения. Защитное стекло и прямоугольная призма-куб выполнены биспектральными, при этом между осью поворота прямоугольной призмы-куба и механизмом наведения по высоте введен дифференциал, один вход которого подключен к механизму наведения по высоте, а другой к вновь введенной системе управления поворотом призмы на постоянный угол. В окулярную часть перископа, между отклоняющим зеркалом и окуляром, введен поляризационный фильтр, имеющий возможность поворота вокруг оптической оси прибора и удаления из основного визуального канала перископа. Предложен вариант изобретения, который отличается тем, что неподвижная часть механизма горизонтального наведения в поднятом положении перископа соединена с верхней частью корпуса подводной лодки системой штырей, имеющих две степени свободы в двух взаимно перпендикулярных плоскостях. Сущность изобретения заключается в следующем. Сущность изобретения пояснена чертежом, на котором показан общий вид предлагаемого устройства. Предлагаемый перископ подводной лодки состоит из головной части 1 и окулярной части 2, соединенных между собой трубой 3. Головная 1 и окулярная 2 части перископа составляют единое целое с трубой 3 перископа, прикреплены к ней. Основной (визуальный) канал наблюдения перископа содержит расположенные последовательно по ходу оптического луча защитное стекло 4, поворотный визирный блок в виде прямоугольной призмы-куб 5, систему смены увеличений 6, состоящую из объектива и окуляра, расположенные в головной части 1 прибора, объектив 7, оборачивающие системы 8, находящиеся внутри трубы 3 перископа, коллектив 9, отклоняющее зеркало 10, поляризационный фильтр 11 и окуляр 12, размещенные в его окулярной части 2. С прямоугольной призмой-кубом оптически связан телевизионный или тепловой дополнительный канал наблюдения 13. Прямоугольная призма-куб 5 приводится в движение при помощи дифференциала 14, который связывает ee c механизмом наведения по высоте 15 при нацеливании перископа на объект или системой поворота призмы на постоянный угол 16 при переключении призмы 5 с основного канала на дополнительный 13. Перископ содержит подъемный механизм, который состоит из многошкифного блока (полистпаста), состоящего из подвижных шкифов, которые приводятся в движение домкратами. Труба 3 имеет возможность перемещения в вертикальном направлении на подшипниках скольжения 17, расположенных наверху корпуса подлодки. Труба 3 оборудована в нижней части подвесным механизмом горизонтального наведения 18, состоящего из двигателя 19 и неподвижной части 20. В верхнем, поднятом положении перископ фиксируется на верхней части корпуса подлодки при помощи соединительного узла, состоящего из "стыковочной" 21 и "плавающей" 22 шайб. "Стыковочная" шайба 21 крепится к внутренней части 23 подволока подлодки, а "плавающая" 22 свободно закреплена на неподвижной части 20 механизма горизонтального наведения. В "плавающей" шайбе 22 предусмотрены два штыря 24 и два паза 25, сориентированные под 90 градусов друг к другу. При соединении шпонки 26, закрепленные на неподвижной части механизма горизонтального наведения, входят в пазы 25 "плавающей" шайбы. Шпоночное соединение 25-26 дает возможность смещения "плавающей" шайбы на допускаемую величину только в направлении линии, соединяющей два шпоночных паза "плавающей" шайбы. В "стыковочной" шайбе 21 предусмотрены гнезда 27, размер которых четко соответствует рабочему размеру штырей 24 "плавающей" шайбы 22 в направлении, перпендикулярном линии, соединяющей гнезда "стыковочной " шайбы и превышает его (имеет допуск) в диаметральном направлении. Таким образом "плавающая" шайба 22 имеет возможность смещения в горизонтальной плоскости, в двух взаимно перпендикулярных направлениях. Предлагаемое устройство работает следующим образом. Пучок лучей от цели попадает в защитное стекло перископа 4 и далее на визирную призму-куб 5, которые выполнены бисспектральными и пропускают излучение в видимом и инфракрасном (ИК) диапазонах. Визирная призма-куб 5 на гипотенузной поверхности имеет цветоделительный слой, и пучки видимого диапазона отражаются практически полностью или в основной визуальный канал наблюдения или в дополнительный 13, если он выполнен телевизионным, а пучки ИК излучения полностью отражаются в дополнительный канал, если он выполнен тепловым. Дополнительный канал (в любом варианте) формирует изображение объекта на электронном приемном устройстве. В диапазоне ИК излучения существует два окна (первое - с длинами волн от 3 до 5 мкм, а второе - с длинами волн от 8 до 14 мкм), которые хорошо пропускаются атмосферой Земли, именно в этих диапазонах и работают ИК приборы наблюдения. Телевизионный канал наблюдения работает в спектральном диапазоне от 0,4 мкм до 1,05 мкм, то есть использует все видимое электромагнитное излучение, а основной визуальный канал работает только на длинах волн, воспринимаемых человеческим глазом, то есть от 0,4 до 0,7 мкм. Телевизионный дополнительный канал так же, как и тепловой дополнительный канал, обеспечивает возможность работы перископа при неблагоприятных условиях (в темноте). Таким образом, основной и дополнительный каналы наблюдения работают абсолютно автономно независимо друг от друга и последовательно, перископ работает либо на визуальном, либо на дополнительном тепловом или телевизионном канале. Единственно, что их объединяет - это защитное стекло и призма-куб, которые выполнены биспектральными и работают как в оптическом, так и ИК диапазонах наблюдения. Призма-куб 5 устанавливается в головной части 1 перископа с возможностью визирования по высоте (в вертикальном направлении) при нацеливании перископа на объект с помощью дифференциала 14, один вход которого соединен с механизмом наведения по высоте 15, а другой - к системе управления поворотом призмы на постоянный угол 16. После визирной призмы 5 пучок попадает в систему смены увеличения 6, состоящую из объектива и окуляра. Далее луч проходит объектив 7 и оборачивающие системы 8, размещенные в трубе 3 перископа, и направляется в окулярную часть 2, отражается от зеркала 10 и горизонтальным ходом попадает в линзовую систему окуляра 12. В основной визуальный канал вводится отсекающий и поляризационный светофильтр 11 для увеличения контраста цели, для ликвидации отраженных солнечных или лунных бликов, солнечных и лунных дорожек. Направление пучка лучей в дополнительный канал наблюдения 13 (тепловой или телевизионный) осуществляется переключением призмы-куба 5. Это переключение осуществляется при помощи дифференциала 14, соединенного с системой поворота призмы- куба на постоянный угол 16. Труба 3 перемещается в вертикальном направлении при помощи подъемного механизма и в верхнем поднятом положении штыри "плавающей" шайбы 21 входят в пазы "стыковочной" шайбы 22, соединяя перископ с верхней частью корпуса подводной лодки 23, так что система штырей имеет две степени свободы в двух взаимно перпендикулярных плоскостях. Труба 3 в поднятом положении получает возможность вращения вокруг своей вертикальной оси при помощи двигателя 19 механизма горизонтального наведения 18. Такое соединение перископа с корпусом подводной лодки 23 предотвращает возможность расцентрировки подшипников, соединяющих трубу 3 перископа с верхней частью корпуса подлодки 23, и подшипников, соединяющих трубу 3 перископа с неподвижной частью 20 механизма горизонтального наведения 18, что может привести к заклиниванию трубы при повороте прибора вокруг вертикальной оси при воздействии на нее давления воды и внешних воздействий ударного характера. Литература 1. С.Г.Бабушкин и др. Оптико-механические приборы, Москва, "Машиностроение", 1965, стр. 286. 2. Франция, заявка N 2488414, приоритет 06. 06. 80, МПК G 02 В 23/08, опубликовано 12. 02. 82 N 6 (прототип).

Формула изобретения

1. Перископ подводной лодки, состоящий из основного визуального канала, содержащего расположенные последовательно по ходу оптического луча защитное стекло, поворотный визирный блок с механизмом наведения по высоте и систему смены увеличений, расположенные в головной части перископа, а также окулярную часть, соединенную трубой с головной частью перископа, внутри которой размещены по ходу оптического луча объектив и оборачивающие системы, и оборудованной в нижней части механизмом горизонтального наведения, причем окулярная часть содержит коллектив, отклоняющее зеркало и окуляр, отличающийся тем, что в головную часть перископа введен дополнительный канал наблюдения, поворотный визирный блок выполнен в виде прямоугольной призмы-куба, оптически связанной с основным и дополнительным каналами наблюдения, защитное стекло и прямоугольная призма-куб выполнены биспектральными, при этом между осью поворота прямоугольной призмы-куба и механизмом наведения по высоте введен дифференциал, один вход которого подключен к механизму наведения по высоте, а другой - к вновь введенной системе управления поворотом призмы на постоянный угол, в окулярную часть перископа, между отклоняющим зеркалом и окуляром введен поляризационный фильтр, имеющий возможность поворота вокруг оптической оси прибора и удаления из основного визуального канала перископа. 2. Перископ подводной лодки по п.1, отличающийся тем, что неподвижная часть механизма горизонтального наведения в поднятом положении перископа соединена с верхней частью корпуса подводной лодки системой штырей, имеющих две степени свободы в двух взаимно перпендикулярных плоскостях.

Похожие патенты:

Изобретение относится к транспортным средствам, а именно к устройствам для улучшения обзора окружающей обстановки при движении транспортных средств, и предназначено для установки преимущественно на легковых автомобилях. Устройство улучшения обзора для транспортного средства содержит видеокамеру, установленную в верхней части складывающейся посредством привода полой стойки, закрепленной на корпусе транспортного средства, дисплей с пультом управления складыванием стойки, размещенные внутри транспортного средства, а также пульт управления с приводом. Внутри стойки проложены электрические кабели, соединяющие видеокамеру с дисплеем. Стойка выполнена в виде конической мачты, состоящей из неподвижной и подвижной частей. На корпусе транспортного средства закреплена неподвижная часть, которая соединена с подвижной с возможностью вращения последней относительно нее на 180° при помощи электродвигателя. Электродвигатель размещен в неподвижной части. Вращение ограничено упорами, расположенными в неподвижной части. Достигается упрощение конструкции и повышение удобства использования устройством улучшения обзора для транспортного средства. 3 з.п. ф-лы, 4 ил.

Изобретение относится к оптическому приборостроению, к устройствам оптического наведения и прицеливания, а именно к перископам подводных лодок

Перископ — это оптический прибор. Он представляет собой зрительную трубу у которой имеется система зеркал, призм и линз. Его предназначение - осуществлять наблюдение из разнообразных укрытий, к которым относятся убежища, броневые башни, танки, подводные лодки.

Исторические корни

Свою биографию перископ ведет с 1430-х годов, когда изобретатель Иоганн Гутенберг придумал устройство, которое позволяло осуществлять наблюдение поверх голов людской толпы за зрелищами на ярмарках в городе Аахен (Германия).

Перископ и его устройство описывал ученый Ян Гевелий в своих трактатах в 1647 году. Он предполагал применять его при исследовании и описании лунной поверхности. Также первым предложил использовать их для военных целей.

Первые перископы

Первый настоящий и работоспособный перископ запатентован в 1845 году американской изобретательницей Сарой Мэтер. Ей удалось серьезно усовершенствовать это устройство и довести его до практического применения в вооруженных силах. Так, в период гражданской войны в США солдаты присоединяли перископы к своим ружьям для скрытной и безопасной для себя стрельбы.

Французский изобретатель и ученый Дэви в 1854 году приспособил перископ для военно-морских сил. Его устройство состояло из двух развернутых под углом 45 градусов зеркал, которые размещались в трубе. А первый перископ, примененный на изобрел американец Доути в период гражданской войны в США 1861-1865 годов.

В Первую мировую войну солдаты воюющих сторон также использовали перископы различных конструкций для стрельбы из укрытий.

Во время второй мировой войны эти устройства нашли широкое применение на полях сражений. Кроме подводных лодок, они использовались для наблюдения за противником из укрытий и блиндажей, а также на танках.

Практически с момента появления подводных лодок перископы на них используются для осуществления наблюдения при нахождении субмарины в подводном положении. Происходит это на так называемой «перископной глубине».

Они предназначены для уточнения навигационной обстановки на морской поверхности и для обнаружения самолетов. Когда подводная лодка начинает погружаться, труба перископа втягивается в корпус субмарины.

Конструкция

Классический перископ - это конструкция из трех отдельно расположенных устройств и частей:

  1. Оптической трубы.
  2. Подъемного устройства.
  3. Тумбы с сальниками.

Самым сложным конструктивным механизмом является оптическая система. Это две астрономических трубы, совмещенные друг с другом объективами. Они снабжены зеркалальными призмами полного внутреннего отражения.

У субмарин есть для перископа и дополнительные устройства. К ним относятся дальномерные приборы, системы определения курсовых углов, фото- и видеокамеры, светофильтры, а также системы осушки.

Для установления расстояния до цели в перископе применяют два типа устройств - дальномерные сетки и микрометры.

Незаменим в перископе светофильтр. Он располагается перед окуляром, разбит на три сектора. Каждый сектор представляет собой определенного цвета стекло.

Фотокамера аппарата или иная, предназначенная для получения изображения, необходима для установления фактов поражения целей и фиксирования событий на поверхности. Эти устройства устанавливаются за перископным окуляром на специальных кронштейнах.

Перископная труба полая, в ней находится воздух, который содержит определенное количество паров воды. В целях удаления оседающей на линзы влаги, которая конденсируется на них вследствие изменения температуры, используется специальное устройство осушки. Эта процедура осуществляется благодаря быстрой прогонке через трубу сухого воздуха. Он впитывает в себя скапливающуюся влагу.

На подводной лодке перископ выглядит как выступающая над рубкой труба с «набалдашником» на конце.

Тактика использования

Для обеспечения скрытности перископ подводной лодки подымают из-под воды с определенными периодами времени. Эти интервалы зависят от погодных условий, скорости и дальности объектов наблюдения.

Перископ оказывает командиру подводной лодки помощь в определении направления (пеленга) с субмарины на цель. Позволяет определять курсовой угол судна противника, его характеристики (тип, скорость, вооружение, и т. д.). Дает информацию о моменте проведения торпедного залпа.

Размеры выступающего из-под воды перископа, его головой головной части, должны быть как можно меньшими. Это необходимо для того, чтобы противник не зафиксировал местонахождение подводной лодки.

Для субмарин очень большую опасность представляют самолеты противника. Вследствие этого, при переходах подводных лодок значительное внимание уделяется контролю воздушной обстановки.

Однако для осуществления такого совмещенного наблюдения оконечная часть перископов достаточно массивна, так как там размещается оптика зенитного наблюдения.

Поэтому на субмаринах ставят два перископа, а именно командирский (атаки) и зенитный. С помощью последнего можно осуществлять наблюдение не только за воздушной обстановкой, а также за поверхностью моря (от зенита до горизонта).

После того как перископ поднят, осуществляется осмотр воздушной полусферы. Наблюдение за водной поверхностью изначально осуществляется в носовом секторе, а потом переходит на обзор всего горизонта.

Для обеспечения скрытности, в том числе от радиолокационных средств противника, в интервалах между подъемами перископа субмарина осуществляет маневры на безопасной глубине.

Как правило, высота возвышения перископа подводной лодки над уровнем моря находится в пределах от 1 до 1,5 метров. Это соответствует видимости горизонта на дальность в 21-25 кабельтовых (около 4,5 км).

Перископ, как было сказано выше, должен находиться над поверхностью моря как можно меньший промежуток времени. Особенно это важно для субмарины, которая начинает атаку. Практика говорит о том, что для определения дистанции и иных параметров требуется немного времени, около 10 секунд. Такой временной интервал нахождения перископа на поверхности обеспечивает его полную скрытность, так за такой короткий срок обнаружить его невозможно.

Следы на поверхности моря

При движении субмарины перископ оставляет за собой след и бурун. Его хорошо видно не только в штиль, но и при незначительном волнении моря. Длина и характер буруна, размер следа, находятся в прямой зависимости от скорости движения подводной лодки.

Так, при скорости в 5 узлов (около 9 км/ч) длина перископного следа составляет около 25 м. Пенный след от него хорошо заметен. Если скорость субмарины составляет 8 узлов (около 15 км/ч), то длина следа равна уже 40 м, а бурун виден на большом расстоянии.

При передвижении подводной лодки в штиль проявляется от перископа ярко выраженный белый цвет буруна и объемный пенистый след. Он остается на поверхности даже после того как устройство втянуто внутрь корпуса.

Вследствие этого, перед тем как его поднять, командир субмарины предпринимает меры к замедлению скорости движения. В целях уменьшения заметности подводной лодки оконечной части придается обтекаемая форма. На имеющихся фото перископа это легко заметить.

Иные недостатки

К недостаткам этого устройства наблюдения относятся следующие:

  1. Его нельзя использовать в темное время суток, а также в условиях недостаточной видимости.
  2. Перископ, выглядывающий из воды, без существенных затруднений может быть обнаружен как зрительно, так и с помощью радиолокационных средств вероятного противника.
  3. Сделанные наблюдателями фото такого перископа - что визитная карточка нахождения здесь субмарины.
  4. С его помощью нельзя с необходимой точностью определить дистанцию до цели. Данное обстоятельство снижает эффективность применения по ней торпед. Более того, дальность обнаружения перископа оставляет желать лучшего.

Все вышеуказанные недостатки привели к тому, что в дополнение к перископам появились новые, передовые средства наблюдения для субмарин. Это в первую очередь система радиолокации и гидроакустики.

Перископ - это обязательный прибор на подводной лодке. Внедрение в технические системы современных субмарин новых устройств (радиолокационных и гидроакустических) не понизили его роль. Они лишь дополнили его возможности, сделав подводную лодку более «зрячей» при плохой видимости, в условиях снега, дождя, тумана и т. д.